\(\int \frac {(A+C \cos ^2(c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx\) [1191]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 229 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {(7 A+C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {2 (5 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}-\frac {(7 A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}+\frac {2 (5 A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d}-\frac {(7 A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \]

[Out]

2/3*(5*A+C)*sec(d*x+c)^(3/2)*sin(d*x+c)/a^2/d-1/3*(7*A+C)*sec(d*x+c)^(3/2)*sin(d*x+c)/a^2/d/(1+cos(d*x+c))-1/3
*(A+C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2-(7*A+C)*sin(d*x+c)*sec(d*x+c)^(1/2)/a^2/d+(7*A+C)*(cos
(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^
(1/2)/a^2/d+2/3*(5*A+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*
cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4306, 3121, 3057, 2827, 2716, 2720, 2719} \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {2 (5 A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a^2 d}-\frac {(7 A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{a^2 d}-\frac {(7 A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a^2 d (\cos (c+d x)+1)}+\frac {2 (5 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {(7 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[In]

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2))/(a + a*Cos[c + d*x])^2,x]

[Out]

((7*A + C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) + (2*(5*A + C)*Sqrt[Cos[c
+ d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) - ((7*A + C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/
(a^2*d) + (2*(5*A + C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*a^2*d) - ((7*A + C)*Sec[c + d*x]^(3/2)*Sin[c + d*x]
)/(3*a^2*d*(1 + Cos[c + d*x])) - ((A + C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3121

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x
])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))^2} \, dx \\ & = -\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {3}{2} a (3 A+C)-\frac {1}{2} a (5 A-C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx}{3 a^2} \\ & = -\frac {(7 A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {3 a^2 (5 A+C)-\frac {3}{2} a^2 (7 A+C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{3 a^4} \\ & = -\frac {(7 A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\left ((5 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{a^2}-\frac {\left ((7 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{2 a^2} \\ & = -\frac {(7 A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}+\frac {2 (5 A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d}-\frac {(7 A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac {\left ((5 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 a^2}+\frac {\left ((7 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^2} \\ & = \frac {(7 A+C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {2 (5 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}-\frac {(7 A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}+\frac {2 (5 A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d}-\frac {(7 A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.47 (sec) , antiderivative size = 734, normalized size of antiderivative = 3.21 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {7 \sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right )}{3 d (a+a \cos (c+d x))^2}-\frac {\sqrt {2} C e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right )}{3 d (a+a \cos (c+d x))^2}+\frac {20 A \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \sin (c)}{3 d (a+a \cos (c+d x))^2}+\frac {4 C \cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \sin (c)}{3 d (a+a \cos (c+d x))^2}+\frac {\cos ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\sec (c+d x)} \left (-\frac {2 (7 A+C) \cos (d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right )}{d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{3 d}+\frac {8 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (4 A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{3 d}+\frac {8 A \sec (c) \sec (c+d x) \sin (d x)}{3 d}+\frac {8 (A+5 A \cos (c)+C \cos (c)) \sec (c) \tan \left (\frac {c}{2}\right )}{3 d}+\frac {2 (A+C) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{(a+a \cos (c+d x))^2} \]

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2))/(a + a*Cos[c + d*x])^2,x]

[Out]

(-7*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]
^4*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7
/4, -E^((2*I)*(c + d*x))])*Sec[c/2])/(3*d*E^(I*d*x)*(a + a*Cos[c + d*x])^2) - (Sqrt[2]*C*Sqrt[E^(I*(c + d*x))/
(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(
c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2]
)/(3*d*E^(I*d*x)*(a + a*Cos[c + d*x])^2) + (20*A*Cos[c/2 + (d*x)/2]^4*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c
 + d*x)/2, 2]*Sec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(3*d*(a + a*Cos[c + d*x])^2) + (4*C*Cos[c/2 + (d*x)/2]^4*Sqr
t[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/2, 2]*Sec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(3*d*(a + a*Cos[c + d*x
])^2) + (Cos[c/2 + (d*x)/2]^4*Sqrt[Sec[c + d*x]]*((-2*(7*A + C)*Cos[d*x]*Csc[c/2]*Sec[c/2])/d + (2*Sec[c/2]*Se
c[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(3*d) + (8*Sec[c/2]*Sec[c/2 + (d*x)/2]*(4*A*Sin[(d*x)/2]
 + C*Sin[(d*x)/2]))/(3*d) + (8*A*Sec[c]*Sec[c + d*x]*Sin[d*x])/(3*d) + (8*(A + 5*A*Cos[c] + C*Cos[c])*Sec[c]*T
an[c/2])/(3*d) + (2*(A + C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))/(a + a*Cos[c + d*x])^2

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(710\) vs. \(2(257)=514\).

Time = 11.79 (sec) , antiderivative size = 711, normalized size of antiderivative = 3.10

method result size
default \(\text {Expression too large to display}\) \(711\)

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a^2*(4*A*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c
),2^(1/2)))-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d
*x+1/2*c)^2)^(1/2)+1/3*(A+C)*(2*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*EllipticF(cos
(1/2*d*x+1/2*c),2^(1/2))-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*(2
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*Ellipti
cE(cos(1/2*d*x+1/2*c),2^(1/2)))*cos(1/2*d*x+1/2*c)-12*sin(1/2*d*x+1/2*c)^6+20*sin(1/2*d*x+1/2*c)^4-7*sin(1/2*d
*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(-1+sin(1/2*d*x+1/2*c)^2)
-8*A/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*s
in(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE
(cos(1/2*d*x+1/2*c),2^(1/2)))+4*A*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2
)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2*c)/(-1+2*cos(
1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 417, normalized size of antiderivative = 1.82 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {2 \, {\left (\sqrt {2} {\left (5 i \, A + i \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, \sqrt {2} {\left (5 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (5 i \, A + i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (\sqrt {2} {\left (-5 i \, A - i \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, \sqrt {2} {\left (-5 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-5 i \, A - i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (\sqrt {2} {\left (-7 i \, A - i \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, \sqrt {2} {\left (-7 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-7 i \, A - i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (\sqrt {2} {\left (7 i \, A + i \, C\right )} \cos \left (d x + c\right )^{3} + 2 \, \sqrt {2} {\left (7 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (7 i \, A + i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (3 \, {\left (7 \, A + C\right )} \cos \left (d x + c\right )^{3} + 4 \, {\left (8 \, A + C\right )} \cos \left (d x + c\right )^{2} + 8 \, A \cos \left (d x + c\right ) - 2 \, A\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/6*(2*(sqrt(2)*(5*I*A + I*C)*cos(d*x + c)^3 + 2*sqrt(2)*(5*I*A + I*C)*cos(d*x + c)^2 + sqrt(2)*(5*I*A + I*C)
*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 2*(sqrt(2)*(-5*I*A - I*C)*cos(d*x +
 c)^3 + 2*sqrt(2)*(-5*I*A - I*C)*cos(d*x + c)^2 + sqrt(2)*(-5*I*A - I*C)*cos(d*x + c))*weierstrassPInverse(-4,
 0, cos(d*x + c) - I*sin(d*x + c)) + 3*(sqrt(2)*(-7*I*A - I*C)*cos(d*x + c)^3 + 2*sqrt(2)*(-7*I*A - I*C)*cos(d
*x + c)^2 + sqrt(2)*(-7*I*A - I*C)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c
) + I*sin(d*x + c))) + 3*(sqrt(2)*(7*I*A + I*C)*cos(d*x + c)^3 + 2*sqrt(2)*(7*I*A + I*C)*cos(d*x + c)^2 + sqrt
(2)*(7*I*A + I*C)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c
))) + 2*(3*(7*A + C)*cos(d*x + c)^3 + 4*(8*A + C)*cos(d*x + c)^2 + 8*A*cos(d*x + c) - 2*A)*sin(d*x + c)/sqrt(c
os(d*x + c)))/(a^2*d*cos(d*x + c)^3 + 2*a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(5/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a)^2, x)

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(5/2))/(a + a*cos(c + d*x))^2,x)

[Out]

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(5/2))/(a + a*cos(c + d*x))^2, x)